products category
一、防爆變頻柜在調(diào)試與使用過程中經(jīng)常會遇到各種各樣的問題,其中過電壓現(xiàn)象為常見。過電壓產(chǎn)生后,防爆變頻柜為了防止內(nèi)部電路損壞,其過電壓保護功能將動作,使防爆變頻柜停止運行,導致設備無法正常工作。因此必須采取措施消除過電壓,防止故障的發(fā)生。由于防爆變頻柜與電機的應用場合不同,產(chǎn)生過電壓的原因也不相同,所以應根據(jù)具體情況采取相應的對策。
二、過電壓的產(chǎn)生與再生制動所謂防爆變頻柜的過電壓,是指由于種種原因造成的防爆變頻柜電壓超過額定電壓,集中表現(xiàn)在變頻器直流母線的直流電壓上。正常工作時,防爆變頻柜直流部電壓為三相全波整流后的平均值。若以380V線電壓計算,則平均直流電壓Ud=1.35U線=513V。在過電壓發(fā)生時,直流母線上的儲能電容將被充電,當電壓上升至700V左右時,(因機型而異)防爆變頻柜過電壓保護動作。造成過電壓的原因主要有兩種:電源過電壓和再生過電壓。電源過電壓是指因電源電壓過高而使直流母線電壓超過額定值。而現(xiàn)在大部分防爆變頻柜的輸入電壓 高可達460V,因此,電源引起的過電壓極為少見。本文主要討論的問題是再生過電壓。產(chǎn)生再生過電壓主要有以下原因:當大GD2(飛輪力矩)負載減速時防爆變頻柜減速時間設定過短;電機受外力影響(風機、牽伸機)或位能負載(電梯、起重機)下放。由于這些原因,使電機實際轉速高于防爆變頻柜的指令轉速,也就是說,電機轉子轉速超過了同步轉速,這時電機的轉差率為負,轉子繞組切割旋轉磁場的方向與電動機狀態(tài)時相反,其產(chǎn)生的電磁轉矩為阻礙旋轉方向的制動轉矩。所以電動機實際上處于發(fā)電狀態(tài),負載的動能被“再生”成為電能。再生能量經(jīng)逆變部續(xù)流二極管對防爆變頻柜直流儲能電容器充電,使直流母線電壓上升,這就是再生過電壓。因再生過電壓的過程中產(chǎn)生的轉矩與原轉矩相反,為制動轉矩,因此再生過電壓的過程也就是再生制動的過程。換句話說,消除了再生能量,也就提高了制動轉矩。如果再生能量不大,因防爆變頻柜與電機本身具有20%的再生制動能力,這部分電能將被防爆變頻柜及電機消耗掉。若這部分能量超過了防爆變頻柜與電機的消耗能力,直流回路的電容將被過充電,防爆變頻柜的過電壓保護功能動作,使運行停止。為避免這種情況的發(fā)生,必須將這部分能量及時的處理掉,同時也提高了制動轉矩,這就是再生制動的目的。
三、過電壓的防止措施:由于過電壓產(chǎn)生的原因不同,因而采取的對策也不相同。對于在停車過程中產(chǎn)生的過電壓現(xiàn)象,如果對停車時間或位置無特殊要求,那么可以采用延長防爆變頻柜減速時間或自由停車的方法來解決。所謂自由停車即變頻器將主開關器件斷開,讓電機自由滑行停止。如果對停車時間或停車位置有一定的要求,那么可以采用直流制動(DC制動)功能。直流制動功能是將電機減速到一定頻率后,在電機定子繞組中通入直流電,形成一個靜止的磁場。電機轉子繞組切割這個磁場而產(chǎn)生一個制動轉矩,使負載的動能變成電能以熱量的形式消耗于電機轉子回路中,因此這種制動又稱作能耗制動。在直流制動的過程中實際上包含了再生制動與能耗制動兩個過程。這種制動方法效率僅為再生制動的30-60%,制動轉矩較小。由于將能量消耗于電機中會使電機過熱,所以制動時間不宜過長。而且直流制動開始頻率,制動時間及制動電壓的大小均為人工設定,不能根據(jù)再生電壓的高低自動調(diào)節(jié),因而直流制動不能用于正常運行中產(chǎn)生的過電壓,只能用于停車時的制動。對于減速(從高速轉為低速,但不停車)時因負載的GD2(飛輪轉矩)過大而產(chǎn)生的過電壓,可以采取適當延長減速時間的方法來解決。其實這種方法也是利用再生制動原理,延長減速時間只是控制負載的再生電壓對防爆變頻柜的充電速度,使防爆變頻柜本身的20%的再生制動能力得到合理利用而已。至于那些由于外力的作用(包括位能下放)而使電機處于再生狀態(tài)的負載,因其正常運行于制動狀態(tài),再生能量過高無法由防爆變頻柜本身消耗掉,因此不可能采用直流制動或延長減速時間的方法。再生制動與直流制動相比,具有較高的制動轉矩,而且制動轉矩的大小可以跟據(jù)負載所需的制動力矩(即再生能量的高低)由防爆變頻柜的制動單元自動控制。因此再生制動適用于在正常工作過程中為負載提供制動轉矩。
四、再生制動的方法: 1. 能量消耗型:這種方法是在防爆變頻柜直流回路中并聯(lián)一個制動電阻,通過檢測直流母線電壓來控制一個功率管的通斷。在直流母線電壓上升至700V左右時,功率管導通,將再生能量通入電阻,以熱能的形式消耗掉,從而防止直流電壓的上升。由于再生能量沒能得到利用,因此屬于能量消耗型。同為能量消耗型,它與直流制動的不同點是將能量消耗于電機之外的制動電阻上,電機不會過熱,因而可以較頻繁的工作。 2. 并聯(lián)直流母線吸收型:適用于多電機傳動系統(tǒng)(如牽伸機),在這個系統(tǒng)中,每臺電機均需一臺防爆變頻柜,多臺防爆變頻柜共用一個網(wǎng)側變流器,所有的逆變部并接在一條共用直流母線上。這種系統(tǒng)中往往有一臺或數(shù)臺電機正常工作于制動狀態(tài),處于制動狀態(tài)的電機被其它電動機拖動,產(chǎn)生再生能量,這些能量再通過并聯(lián)直流母線被處于電動狀態(tài)的電機所吸收。在不能*吸收的情況下,則通過共用的制動電阻消耗掉。這里的再生能量部分被吸收利用,但沒有回饋到電網(wǎng)中。 3. 能量回饋型:能量回饋型的防爆變頻柜網(wǎng)側變流器是可逆的,當有再生能量產(chǎn)生時,可逆變流器將再生能量回饋給電網(wǎng),使再生能量得到*利用。但這種方法對電源的穩(wěn)定性要求較高,一旦突然停電,將發(fā)生逆變。
五、再生制動的應用一條化纖長絲牽伸生產(chǎn)線,由三臺牽伸機組成,分別由三臺電機驅(qū)動。一輥電機功率22KW、4極,采用蝸桿減速器,速比為25:1;二輥電機功率37KW、4極,蝸桿減速器,速比16:1;三輥電機功率45KW,采用圓柱輪減速器,速比6:1。電機分別采用華為TD2000-22KW三墾IHF37K,45K防爆變頻柜驅(qū)動。三臺防爆變頻柜根據(jù)牽伸比及速比采用比例控制。它的工作過程是這樣的:絲束繞在一輥、二輥、三輥上,由防爆變頻柜控制三輥之間不同的速度對絲束進行牽伸。開車調(diào)試時因牽伸比小,絲束總旦較低,系統(tǒng)開車正常。在投產(chǎn)一段時間后,由于工藝調(diào)整,增大了牽伸比及絲束總旦,(牽伸比由工藝決定,總旦通俗的說,就是絲束的粗細及根數(shù)多少,總旦越高,絲束越粗。牽伸倍數(shù)或總旦越大,三輥對二輥、一輥的拖力越大。)這時出現(xiàn)了問題。開車時間不長,一輥防爆變頻柜頻繁顯示SC(過電壓防止),二輥變頻器偶爾也有這種現(xiàn)象。時間稍長,一輥防爆變頻柜保護停機,故障顯示E006(過電壓)。通過對故障現(xiàn)象進行仔細的分析,得出以下結論:由于一輥與二輥之間的牽伸比占總牽伸倍數(shù)的70%,而二輥、三輥電機功率均大于一輥,因此一輥電機實際工作于發(fā)電狀態(tài),它必須產(chǎn)生足夠的制動力矩,才能保證牽伸倍數(shù)。二輥則根據(jù)工藝狀況工作于電動與制動狀態(tài)之間,只有三輥為電動狀態(tài)。也就是說,一輥防爆變頻柜若不能將電機產(chǎn)生的再生能量處理掉,它就不能產(chǎn)生足夠的制動力矩,那么將會被二輥“拖跑”。被“拖跑”的主要原因在于防爆變頻柜為防止過電壓跳閘而采取的自動提高輸出頻率的功能(即“SC”失速防止功能)。防爆變頻柜為了降低再生能量,將會自動增加電機轉速,試圖降低再生電壓,但是因再生能量過高,所以并不能阻止過電壓的發(fā)生。因此,問題的焦點是必須保證一輥、二輥電機具有足夠的制動力矩。增加一輥、二輥電機及防爆變頻柜容量可以達到這個目的,但這顯然是不經(jīng)濟的。而將一輥、二輥產(chǎn)生的過電壓及時處理掉,不讓防爆變頻柜的直流電壓升高,也能夠提供足夠的制動力矩。由于在系統(tǒng)設計時未考慮到這點,采用共用直流母線吸收型或能量回饋型的方法已不可能。經(jīng)仔細論證,只有采用將一輥、二輥防爆變頻柜各增加一組外接制動單元的方案。經(jīng)計算選用了兩組華為 TDB-4C01-0300制動組件。開車后兩組制動單元電阻尤其是一輥制動阻工作頻率非常之高,說明我們的分析是正確的。整個系統(tǒng)運行近一年,再也沒有發(fā)生過過電壓現(xiàn)象。六、結束語:本文詳細說明了防爆變頻柜產(chǎn)生過電壓的各種原因及相應的防止措施,討論了再生制動的幾種方式,并通過應用實例對過電壓的防止及再生制動的應用進行了仔細的分析。結果證明,再生制動功能是解決過電壓現(xiàn)象的主要的方法。
返回列表